Geometric Derivation of the Delaunay Variables and Geometric Phases

نویسندگان

  • DONG EUI CHANG
  • JERROLD E. MARSDEN
چکیده

We derive the classical Delaunay variables by finding a suitable symmetry action of the three torus T3 on the phase space of the Kepler problem, computing its associated momentum map and using the geometry associated with this structure. A central feature in this derivation is the identification of the mean anomaly as the angle variable for a symplectic S1 action on the union of the non-degenerate elliptic Kepler orbits. This approach is geometrically more natural than traditional ones such as directly solving Hamilton–Jacobi equations, or employing the Lagrange bracket. As an application of the new derivation, we give a singularity free treatment of the averaged J2-dynamics (the effect of the bulge of the Earth) in the Cartesian coordinates by making use of the fact that the averaged J2-Hamiltonian is a collective Hamiltonian of the T 3 momentum map. We also use this geometric structure to identify the drifts in satellite orbits due to the J2 effect as geometric phases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Programming Problem with Trapezoidal Fuzzy Variables

Nowadays Geometric Programming (GP) problem is a very popular problem in many fields. Each type of Fuzzy Geometric Programming (FGP) problem has its own solution. Sometimes we need to use the ranking function to change some part of GP to the linear one. In this paper, first, we propose a method to solve multi-objective geometric programming problem with trapezoidal fuzzy variables; then we use ...

متن کامل

On the bounds in Poisson approximation for independent geometric distributed random variables

‎The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎Some results related to random sums of independent geometric distributed random variables are also investigated.

متن کامل

Noncyclic Geometric Phase and Its Non-Abelian Generalization

We use the theory of dynamical invariants to yield a simple derivation of noncyclic analogues of the Abelian and non-Abelian geometric phases. This derivation relies only on the principle of gauge invariance and elucidates the existing definitions of the Abelian noncyclic geometric phase. We also discuss the adiabatic limit of the noncyclic geometric phase and compute the adiabatic non-Abelian ...

متن کامل

A goal geometric programming problem (G2P2) with logarithmic deviational variables and its applications on two industrial problems

A very useful multi-objective technique is goal programming. There are many methodologies of goal programming such as weighted goal programming, min-max goal programming, and lexicographic goal programming. In this paper, weighted goal programming is reformulated as goal programming with logarithmic deviation variables. Here, a comparison of the proposed method and goal programming with weighte...

متن کامل

A Discrete Representation of Einstein’s Geometric Theory of Gravitation: The Fundamental Role of Dual Tessellations in Regge Calculus

In 1961 Tullio Regge provided us with a beautiful lattice representation of Einstein’s geometric theory of gravity. This Regge Calculus (RC) is strikingly different from the more usual finite difference and finite element discretizations of gravity. In RC the fundamental principles of General Relativity are applied directly to a tessellated spacetime geometry. In this manuscript, and in the spi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003